
The use of a hybrid method combining finite element calculation of the parameters in 
the channel cross section (the use of planar elements)and finite-difference approximation 
lengthwise is evidently the most effective and expedient approach with regard to saving com- 
puter storage and cutting processor operating time. The latter is 30-40 sec for one step on 
an ES-1061 computer. 

NOTATION 

U, velocity; T, temperature; Ck, concentration of the k-th component; x, y, z, carte- 
sian coordinate system; p, density; If, frozen thermal conductivity; Pt, it, and Dt, turbu- 
lent values of the viscosity coefficient, thermal conductivity, and diffusion, respectively; 
N--u, mean Nusselt number for both sides T l and T 2. Indices: (e) - for an element; wa - wall. 
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APPROXIMATE SOLUTION OF A PROBLEM OF CONVECTIVE HEAT TRANSFER 

BETWEEN A PLATE AND LIQUID METALS 

V. V. Golubev UDC 532.526.4:536.242 

This article examines a theoretical method of calculating the heat-transfer 
coefficient for different values of the Reynolds number of a liquid-metal 
flow onto a plate. 

The differential (local) method has become the method most commaonly used in the general 
theory of qualitative and quantitative description of heat transfer under conditions of wall 
turbulence. In this method, turbulent heat transfer is completely determined by the physi- 
cal parameters (density, viscosity, distributions of mean velocities and temperature) of a 
uniform fluid flow (liquid metals, gas, liquids in drop form) [i]. If we connect a trans- 
lating coordinate system with a local fluid particle, then in accordance with Galileo's 
principle all of the dynamic processes of turbulent transport will occur identically in re- 
gard to this inertial system of reference [I]. 

Let only two physical quantities - momentum and heat - be transported through stream- 
lines representing the averaged motion of the fluid medium. Then the transfer of momentum 
creates turbulent friction between the layers of the fluid, while heat transfer results in 
turbulent heat conduction. Since there are no other factors contributing to turbulent heat 
transfer in the given case, the turbulent mixing mechanism will be the same for both tur- 
bulent friction and turbulent heat conduction [i]. Meanwhile, the same volumes of fluid 
simultaneously transfer momentum and heat. If no heat is exchanged with the environment, 
then it follows from the Prandtl theory [i] that if momentum is conserved, then the amount 
of heat transferred by the fluid volumes is also conserved. This leads to a situation where- 
by the turbulent Prandtl number, characterizing the connection between turbulent transfer of 
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momentum and heat, is equal to unity [i]. Also, the thicknesses of the hydrodynamic and 
thermal turbulent boundary layers (TBL) can be assumed to coincide in this instance. Thus, 
in the framework of the given formulation of the problem, the main issue remaining unre- 
solved with regard to heat transfer under conditions of wall turbulence is the determina- 
tion of the shear stress associated with turbulent friction. 

Following Boussinesq's notion [i], we can determine turbulent friction as a function 
of the nonuniformity of the field of averaged velocities near each point of the flow. 
Then assuming the shear stress to consist of viscous and turbulent components and having 
written Fourier's law in the form of its turbulent analog, we can use the Newton-Reichmann 
law in the example of a hydraulically smooth plate of length L to calculate the heat trans- 
fer from a solid to a flow of a uniform one-phase fluid washing over it. 

Here, to ensure intensive heat removal from the heating surfaces of differential struc- 
tural elements of power-plant equipment, we examined liquid metals as the uniform fluid. 
Liquid metals have a higher thermal conductivity than liquids in drop form or gases [1-4]. 

Let the velocity u~ of the liquid-metal flow incident on the plate be such that Re >> i, 
while the thickness of the TBL ~/L << i. In this case, the TBL on the plate can be consid- 
ered planar [5]. Following Prandtl [i], pulsations of velocity normal to the streamlines 
representing averaged motion can be assumed to be proportional to the difference between 
the velocities of the fluid layers. The axis of the coordinate system is directed perpendi- 
cular to the streamlines. Then the basic equation of heat conduction under wall-turbulence 
conditions [1-5] has the following form [6] in dimensionless variables after some simple 
transformations: 

dW 
= (Y + s~) , (1 )  

d~ 

(_~r t ~ ) Wh~ d~dt (2) Q= s~ +--PT--r, 
If the shear stress and heat flux in the TBL do not change along y and the temperature 

on the plate surface t c is fixed, then with knowledge of the turbulent friction law and in- 
tegration of Eqs. (i) and (2) over the thickness of the TBL, we can determine the tempera- 
ture gradient in the TBL. However, no such solution can be obtained because the friction 
law is unknown in the region of contact of the thermal sublayer with the turbulent core in 
a TBL [5]. Various simplifications have been made in the literature [i, 3-6] to calculate 
heat transfer on the basis of Eqs. (i) and (2). For example, investigators have used two- 
layer schemes [i, 3-5] for a thermal TBL (without allowance for the region of contact of 
the thermal sublayer with the turbulent core) and three-layer TBL models [i, 6] in which 
the unknown friction law is approximated by a specially chosen function. For those reasons, 
the solutions of Eqs. (1)-(2) presented in [i~ 3-6] have a very limited range of applica- 
tion. For example, the solutions based on two-layer schemes for the TBL are valid only for 
Pr " 1 [4], while the solutions based on three-layer TBL models are valid for 1 ~ Pr < i0 
[i]. Thus, the main method of investigation is experimentation [2-4]. However, the empiri- 
cal solutions in [2-4] are valid within the narrow ranges in which they were substantiated 
experimentally. Thus, it is important to continue the search for methods of calculatin Z 
heat transfer under conditions of wall turbulence. 

Here, our theoretical solution is based on the three-layer Karman model of a thermal 
TBL. The TBL consists of a thermal sublayer, the region of contact of this sublayer with 
the turbulent core (buffer layer), and the turbulent core [I]. We used the following assump- 
tions: I) the structure of the flow in each sublayer of a thermal TBL is strictly deter- 
mined; 2) molecular heat conduction predominates over turbulent heat transfer in the thermal 
sublayer; 3) turbulent heat transfer occurs along with molecular heat conduction in the buf- 
fer layer, but molecular conduction is the decisive factor here; 4) turbulent heat transfer 
predominates over molecular heat conduction in the turbulent core of the TBL. The problem 
in [7, 8] is taken as the basis for calculatin Z shear stress in the buffer layer of the TBL, 
this approach representing a continuation of the solution for the friction law from the ther- 
mal sublayer to the turbulent core of the TBL. Thus, within the framework of the above as- 
sumptions for the problem of calculating heat transfer between a plate and a flow of liquid 
metal, the temperature gradient in the thermal TBL is composed of the sum of the temperature 
gradients in each sublayer determined by integrating (2) over the thickness of the TBL with 
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a known shear stress. The thickness of the TBL is found by solving a boundary-value prob- 
lem obtained on the basis of the impulse theorem [5]: 

3 

8t = Re(O,5cf) - f  (n + 1) (n -~ 2)/n. (3 )  

On the basis of the empirical formula in [3, 4] for the relationship between the ther- 
mal and viscous sublayers Of a hydrodynamic TBL, we determine the thickness k I of the ther- 
mal sublayer: 

k I = ~1 
~/Pr" (4) 

The thickness N: of the viscous sublayer of the hydrodynamic TBL is determined by solving 
the equation for the universal profile of the velocity of the boundary layer [i, 3] after 
we insert into it the value of 6t from (3): 

1 1 /  2 1 
~I -- -- In 4: = ~In 6t. 

V cf 

In the thermal sublayer [0, k l] the velocity profile can be approximated by the follow- 
ing linear function on the basis of the experimental data in [i, 3-5]: 

(4) = kn, (5) 
where k = 1 for heat transfer between the plate and the flow of viscous incompressible 
fluid washing over it (Pr -> I). 

In the case of heat transfer between the plate and a flow of liquid metal washing over 
it (Pr << i), the slope in (5) can be determined through the ratio 

k - -  W ( k:------~) , (6 )  
k: 

where W(k:) = ~1 is the velocity of the thermal TBL at the point ~ = k:. 

(1)-(2) to find the temperature gradient in the thermal We use the solution of Eqs. 
sublayer [0, k:]: 

where 

At: = -  Q A4: Pr2/a, (7 )  
Wh 

A = kPr~ 
k Pr t -~  Pr (1 - -  k) 

According to the experimental data in [4], the liquid metal undergoes slight pulsative 
motion in the buffer layer. Then, considering the high molecular thermal conductivity of 
liquid metals, we can use the following empirical relation [I] for gs in the buffer layer 

t h i s  e q u a t i o n  be ing  v a l i d  f o r  r e g i o n s  o f  t h e  TBL where  m o l e c u l a r  d i f f u s i o n  p r e d o m i n a t e s  o v e r  
t h e  p u l s a t i v e  mo t ion  o f  t h e  u n i f o r m  f l u i d .  Then we o b t a i n  t h e  u p p e r  b o u n d a ry  k 2 o f  t h e  b u f -  
f e r  layer from the solution of the corresponding boundary-value problem obtained on the basis 
of momentum transport equation (i). After some simple transformations, we find the upper 
boundary of the buffer layer k 2 from the relation 

where 

1 4-  (k: - -  ko) 2 k o - -  k~ 
lq-y• arctg l + k 2 k  : - k  o(k2-k~)q-k2o 

1 

+ n :  - -  B (k~ - -  % )  ~ = 0, ( 9 )  

k o -= [k 1 -- hk~ + t  / (kl -- k2h) ~ --a:a2]/(1 ~- h); al = 1 -- h ; 

,)/ B =  c~ ~l (8t--n:)--s a~=  1A-,k~--h(1--i-k~); 

1 

h = ~ (1 + ~• (k~-- n:) ~ - ~ .  
m 
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Fig. i. Comparison of the theoreti- 
cal solution (15) at Pr = 0~ 
Pr t = I, m = 12, n = 7, y = 0.0092 
with empirical solution obtained by 
E. D. Fedorovich Nu = 0.46 Pe ~ 
(dashed curve). 

Here, in accordance with the experimental data in [I, 3-5], the velocity profile of the 
tu rbu len t  TBL core ( for  large values of q) is  approximated by the funct ion 

I 

w~ (n) = nL + n (n --~]~)~,  ( i o )  

where the value of the constant B is determined from the boundary condition on the external 
boundary of the hydrodynamic TBL. 

We find the temperature gradient in the region [ki, k=] from the solution of Eq. (2) 
with the value of Es found from (8): 

where 

At,, = Q Pr C (tq, k~) 
W~ 21/gz , (ii) 

c 0% k~) = ! In (p~ + prig + 1) (g~ - g / ~  + 1) 
2 (p2--p~/2+l)(E2-6gl/g. + l) 

+ arctg 
/ ~ z k ~  (1 - -  e ~) - -  k~ (1 - -  p . )  . 

(1 - -  pB) ( 1 - -  g2) + 2pg  

4/ ~/p----~ 
p=z,%; g=zkl; z = •  V Ph " 

+ 

To determine heat transfer in the turbulent core of the TBL, we assume that consider- 
ably more energy is transferred by eddy diffusion than by molecular diffusion. In this 
case, we exclude v and v/Pr from Eqs. (1)-(2). These equations then allow the particular 
solution [6] 

dt - -  Q Pr, d W  (~). ( 12 ) 
Wh 

After integration of (12), the temperature gradient in the turbulent core of the TBL has the 
form 

Q Pr,![//' 2 W.(k~.)l" Ata = -W~ C i (13) 

The complete temperature gradient in the TBL is the sum of Eqs. (7)~ (ii), and (13), 
i.e., 

2 

A~-- wkQ { A~hpr-5--4- prC(kl' ~ P r t [ ~  ' / 2 [  ~ _W~ (k2 ) ]} .  (14) 

After we insert the heat-transfer coefficient, Eq. (14) appears as follows in dimensionless 
similarity criteria 

Nu = z }/0--~I Pe 

With Pr = i, k i = k 2 = ql, and Eq. (15) yields the well-known [i, 3-5] Reynolds analogy 
of the coefficient of heat transfer between a plate and a fluid in the absence of a pressure 
gradient in the external flow: 
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St  = 0,5cy. 

Figure i shows the agreement between the theoretical solution (15) and the experimental 
data. The slight difference is due to the following: i) neglect by the model of the heat 
generated in the friction of the heat-transmitting flow of liquid metal on the plate; 2) the 
assumption of passivity (Pr t = i) of the physical quantities being transferred (momentum 
and heat); 3) neglect of the effect on heat transfer of the additional phase (impurities, 
oxides) formed at the interface of the liquid metal and wall, as well as the effect of free 
convection in liquid metals. 

The solution (15) can also be used for approximate calculation of heat exchange between 
a hydraulically smooth plate and a flow of an incompressible gas (Pr ~ i). 

NOTATION 

v, kinematic viscosity, m2/sec; es, hydrodynamic coefficient of eddy diffusion, m2/sec; 
W(n) = Ux(Y)/W k, dimensionless velocity; Ux(Y) , projection of averaged velocity on the x 
axis, m/sec; W k = /~-~7~, "dynamic" velocity, m/sec; ~c shear stress on the surface of the 
plate, N/m2; p, density of the fluid, kg/m3; n = yWk/V, dimensionless coordinate; Q = q/ 
(pCp); q, heat flux, W/m2; Cp, heat capacity, J/(kg.deg); Pr t = es/So, turbulent Prandtl 
number; Sq, temperature coefficient of eddy diffusion, m2/sec; Pr = 0/a, molecular Prandtl 
number;a , diffusivity, m2/sec; t, temperature, K; cf = 0.074/Re ~ plate friction coeffi- 
cient; K, dimensionless turbulence coefficient; y, universal constant equal to 0.0092 after 
Dugdale or 0.0125 after Hanratty [i]; Nu = ~L/l, Nusselt number, ~, heat-transfer coeffi- 
cient, W/(m2.K); l, thermal conductivity, W/(m.K); L, plate length, m; Pe = RePr, Peclet 
number; Re = u~L/v, Reynolds number; St = Nu/Pe, Stanton number. 
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